Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Nanoscale ; 16(6): 2993-3005, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38259156

RESUMO

The aggregation of amyloid proteins in the brain is a significant neurotoxic event that contributes to neurodegenerative disorders. The aggregation of amyloid beta (Aß), particularly Aß42 monomers, into various forms such as oligomers, protofibrils, fibrils, and amyloid plaques is a key pathological feature in Alzheimer's disease. As a result, Aß42 is a primary target and the development of molecular strategies for the dissolution of Aß42 aggregates is considered a promising approach to mitigating Alzheimer's disease pathology. A set of pyrene-conjugated peptidomimetics derived from Aß14-23 (AkdcPy, AkdmPy, and AkdnPy) by incorporating an unnatural amino acid [kd: cyclo(Lys-Asp)] were studied for their ability to modulate Aß42 aggregation. AkdcPy and AkdmPy formed vesicular structures in aqueous media. The vesicles of AkdmPy loaded with the neuroprotective compound berberine (Ber), dissipated mutually in the presence of preformed Aß42 fibrils. During this process, the active drug Ber was released. This work is expected to inspire the development of drug-loaded peptidomimetic-based therapeutic formulations to modulate disorders associated with amyloid toxicity.


Assuntos
Doença de Alzheimer , Peptidomiméticos , Humanos , Peptídeos beta-Amiloides/química , Doença de Alzheimer/metabolismo , Peptidomiméticos/uso terapêutico , Fragmentos de Peptídeos/química , Amiloide/química
2.
Cancer Lett ; 586: 216633, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281663

RESUMO

Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.


Assuntos
Melanoma , Peptidomiméticos , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Imunoterapia , Imunoterapia Adotiva , Terapia de Alvo Molecular
3.
J Med Chem ; 67(2): 885-921, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38179950

RESUMO

Hepatitis C viral (HCV) infection is the leading cause of liver failure and still represents a global health burden. Over the past decade, great advancements made HCV curable, and sustained viral remission significantly improved to more than 98%. Historical treatment with pegylated interferon alpha and ribavirin has been displaced by combinations of direct-acting antivirals. These regimens include drugs targeting different stages of the HCV life cycle. However, the emergence of viral resistance remains a big concern. The design of peptidomimetic inhibitors (PIs) able to fit and fill the conserved substrate envelope region within the active site helped avoid contact with the vulnerable sites of the most common resistance-associated substitutions Arg155, Ala156, and Asp168. Herein, we give an overview of HCV NS3 PIs discovered during the past decade, and we deeply discuss the rationale behind the structural optimization efforts essential to achieve pangenotypic activity.


Assuntos
Hepatite C Crônica , Hepatite C , Peptidomiméticos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Inibidores de Proteases/farmacologia , Hepatite C Crônica/tratamento farmacológico , Proteínas não Estruturais Virais , Hepatite C/tratamento farmacológico , Hepacivirus , Farmacorresistência Viral
4.
Curr Med Chem ; 31(10): 1289-1295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37143268

RESUMO

This patent describes the synthesis of compounds, methods, and compositions for preventing, treating, and/or curing Covid-19, human coronavirus, and enterovirus infections. Some peptidomimetic compounds are very potent and could be a game changer in new treatment therapy for COVID-19.


Assuntos
COVID-19 , Infecções por Enterovirus , Enterovirus , Peptidomiméticos , Humanos , Peptidomiméticos/uso terapêutico
5.
Inflammation ; 46(6): 2402-2414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581761

RESUMO

Mesangial proliferative glomerulonephritis (MsPGN), the most common pathological change in primary glomerulonephritis, is characterized by increased macrophage infiltration into glomeruli, which results in proinflammatory cytokine release. Macrophage infiltration and differentiation are induced by the Janus kinase 2 and signal transducer and activator of the transcription 1 (JAK2/STAT1) pathway. As a suppressor of cytokine signaling 1 (SOCS1) downregulates the immune response by inhibiting the JAK2/STAT1 pathway, we investigated whether a peptide mimicking the SOCS1 kinase inhibitor region, namely, SOCS1 peptidomimetic, protects against nephropathy. Glomerular JAK2/STAT1 pathway activation was synchronized with kidney injury in an MsPGN rat model. Rats treated with the SOCS1 peptidomimetic exhibited reduced pathological glomerular changes and lessened macrophage recruitment. Moreover, in vivo, the phosphorylation of the JAK2/STAT1 pathway was downregulated in infiltrated macrophages of glomeruli. In vitro, the SOCS1 peptidomimetic inhibited macrophage M1 polarization by suppressing JAK2/STAT1 activation. In conclusion, our study demonstrated that the SOCS1 peptidomimetic plays a protective role against pathologic glomerular changes in MsPGN by reducing macrophage infiltration and inhibiting macrophage polarizing to the M1 phenotype. SOCS1 peptidomimetic, therefore, presents a feasible therapeutic strategy to alleviate renal inflammation in MsPGN.


Assuntos
Glomerulonefrite , Peptidomiméticos , Ratos , Animais , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Inflamação , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/patologia , Citocinas/metabolismo , Macrófagos/metabolismo
6.
Bioorg Med Chem Lett ; 93: 129439, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557925

RESUMO

Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. We report the design and the parallel synthesis of novel linear oligocyclic guanidine peptidomimetics from predesigned reduced polyamides. A screening of these compounds identified active Mycobacterium tuberculosis DNA gyrase inhibitors which do not inhibit human DNA topoisomerase IIα and topoisomerase I.


Assuntos
Mycobacterium tuberculosis , Peptidomiméticos , Tuberculose , Humanos , DNA Girase , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Guanidinas , Técnicas de Síntese em Fase Sólida , Tuberculose/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Guanidina
7.
Sci Rep ; 13(1): 5099, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991169

RESUMO

OCS-05 (aka BN201) is a peptidomimetic that binds to serum glucocorticoid kinase-2 (SGK2), displaying neuroprotective activity. The objective of this randomized, double-blind 2-part study was to test safety and pharmacokinetics of OCS-05 administered by intravenous (i.v.) infusion in healthy volunteers. Subjects (n = 48) were assigned to receive placebo (n = 12) or OCS-05 (n = 36). , Doses tested were 0.05, 0.2, 0.4, 0.8, 1.6, 2.4 and 3.2 mg/kg in the single ascending dose (SAD) part. In the multiple ascending dose (MAD) part, 2.4 and 3.0 mg/kg doses were administered with 2 h i.v. infusion for 5 consecutive days. Safety assessments included adverse events, blood tests, ECG, Holter monitoring, brain MRI and EEG. No serious adverse events were reported in the OCS-05 group (there was one serious adverse event in the placebo group). Adverse events reported in the MAD part were not clinically significant, and no changes on the ECG, EEG or brain MRI were observed. Single-dose (0.05-3.2 mg/kg) exposure (Cmax and AUC) increased in a dose-proportional manner. Steady state was reached by Day 4 and no accumulation was observed. Elimination half-life ranged from 3.35 to 8.23 h (SAD) and 8.63 to 12.2 h (MAD). Mean individual Cmax concentrations in the MAD part were well below the safety thresholds. OCS-05 administered as 2-h i.v. infusions of multiple doses up to 3.0 mg/Kg daily for up to 5 consecutive days was safe and well tolerated. Based on this safety profile, OCS-05 is currently being tested in a phase 2 trial in patient with acute optic neuritis (NCT04762017, date registration 21/02/2021).


Assuntos
Esclerose Múltipla , Peptidomiméticos , Humanos , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Eletrocardiografia Ambulatorial , Voluntários Saudáveis , Esclerose Múltipla/tratamento farmacológico , Peptidomiméticos/uso terapêutico
8.
Indian J Pharmacol ; 55(1): 53-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960521

RESUMO

Novel SARS-CoV-2 (COVID-19) is affecting worldwide as declared pandemic by the WHO. Various repositioning and novel therapeutic agents are being evaluated under different clinical setups; however, there is no promising therapeutic agent reported to date. Small molecules like peptides have their popularity as their specificity, delivery, and synthesizability as promising therapeutic agents. In this study, we have reviewed the published literature describing peptide designing, in silico binding mode, antiviral activity, preventive measures, and in vivo assessments. Here, we reported all the results which are promising against SARS-CoV-2 as therapeutic and preventive (vaccine candidates), and their status in the drug development process.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , SARS-CoV-2 , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Reposicionamento de Medicamentos , Antivirais/uso terapêutico , Antivirais/química , Peptídeos/uso terapêutico
9.
Clin Drug Investig ; 43(1): 13-22, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462104

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has swept the whole world and brought about a public health crisis of unprecedented proportions. To combat the rapid transmission and possible deaths due to the disease, researchers and companies around the world are developing all possible strategies. Due to the advantages of safety, specificity, and fewer adverse effects, polypeptide and peptidomimetic drugs are considered promising strategies. This review comprehensively summarizes and discusses the progress in development of peptide drugs for use in the treatment of COVID-19. Based on the latest results in this field, we divided them into clinically approved drugs, clinical trial drugs, and clinically ineffective drugs, and outlined the molecular targets and mechanisms of action one by one to reveal their feasibility as promising therapeutic agents for COVID-19. Notably, monoclonal antibodies have shown beneficial effects in the early stages of infection, while Paxlovid can significantly reduce hospitalization and mortality among non-vaccinated patients. Among clinical experimental drugs, both the interleukin-1 receptor antagonist anakinra and the bradykinin B2 receptor antagonist icatibant are well tolerated and effective in patients with COVID-19, but long-term trials are needed to confirm the durability of efficacy.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , COVID-19/prevenção & controle , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais/efeitos adversos
10.
Mol Med ; 28(1): 146, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476230

RESUMO

The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.


Assuntos
Neoplasias , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos
11.
Biomolecules ; 12(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36139079

RESUMO

Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.


Assuntos
Peptídeos Opioides , Peptidomiméticos , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Descoberta de Drogas , Peptídeos Opioides/química , Peptídeos Opioides/farmacologia , Peptídeos Opioides/uso terapêutico , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Receptores Opioides
12.
J Pharmacol Sci ; 149(3): 124-138, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641025

RESUMO

Protein-protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.


Assuntos
Artrite Experimental , Artrite Reumatoide , Helianthus , Peptidomiméticos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Antígenos CD58/química , Antígenos CD58/metabolismo , Helianthus/química , Helianthus/metabolismo , Humanos , Imunidade , Imunomodulação , Camundongos , Peptídeos/farmacologia , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Inibidores da Tripsina/uso terapêutico
13.
Eur J Med Chem ; 238: 114460, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35597010

RESUMO

Parasitic cysteine proteases such as rhodesain (TbCatL) from Trypanosoma brucei rhodesiense are relevant targets for developing new potential drugs against parasitic diseases (e. g. Human African Trypanosomiasis). Designing selective inhibitors for parasitic cathepsins can be challenging as they share high structural similarities with human cathepsins. In this paper, we describe the development of novel peptidomimetic rhodesain inhibitors by applying a structure-based de novo design approach and molecular docking protocols. The inhibitors with a new scaffold in P2 and P3 position display high selectivity towards trypanosomal rhodesain over human cathepsins L and B and high antitrypanosomal activity. Vinylsulfonate 2a has emerged as a potent rhodesain inhibitor (k2nd = 883 • 103 M-1 s-1) with single-digit nanomolar binding affinity (Ki = 9 nM) and more than 150-fold selectivity towards human cathepsins and it thus constitutes an interesting starting compound for the further development of selective drugs against Human African Trypanosomiasis.


Assuntos
Peptidomiméticos , Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Catepsinas , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/química , Humanos , Simulação de Acoplamento Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico
14.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054860

RESUMO

Based on the mechanism of neuropathic pain induction, a new type of bifunctional hybrid peptidomimetics was obtained for potential use in this type of pain. Hybrids consist of two types of pharmacophores that are connected by different types of linkers. The first pharmacophore is an opioid agonist, and the second pharmacophore is an antagonist of the pronociceptive system, i.e., an antagonist of the melanocortin-4 receptor. The results of tests in acute and neuropathic pain models of the obtained compounds have shown that the type of linker used to connect pharmacophores had an effect on antinociceptive activity. Peptidomimetics containing longer flexible linkers were very effective at low doses in the neuropathic pain model. To elucidate the effect of linker lengths, two hybrids showing very high activity and two hybrids with lower activity were further tested for affinity for opioid (mu, delta) and melanocortin-4 receptors. Their complexes with the target receptors were also studied by molecular modelling. Our results do not show a simple relationship between linker length and affinity for particular receptor types but suggest that activity in neuropathic pain is related to a proper balance of receptor affinity rather than maximum binding to any or all of the target receptors.


Assuntos
Melanocortinas/química , Neuralgia/tratamento farmacológico , Peptidomiméticos/uso terapêutico , Sequência de Aminoácidos , Analgésicos , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
15.
Curr Drug Discov Technol ; 19(2): e211221199189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34939544

RESUMO

BACKGROUND: Diabetes affects millions of people worldwide, with predicted numbers of about 700 million adults affected by 2045. Among the several anti-diabetic drug therapies available in the market, Dipeptidyl Peptidase-4 (DPP-4) inhibitors have emerged as a promising therapeutic approach with scope for exploration in the segment of peptidomimetics. OBJECTIVE: Series of proline-containing peptidomimetic compounds were designed and investigated for their drug-likeness through Lipinski's rule of five, lead-likeness through the rule of three, predictive pharmacokinetic studies (absorption, distribution, metabolism, and excretion), and toxicity properties through in-silico approaches. The designed compounds were evaluated for their interactions with binding sites of the enzyme DPP-4 using an extra precision docking approach. METHODS: Proline-containing peptidomimetic compounds were designed rationally. Drug-likeness and lead-likeness properties were calculated using Schrödinger Maestro v11.2 software. ADME and toxicity properties were predicted using PreADMET version 2.0. Docking study was performed using Schrödinger Maestro v11.2 software, and ligands for the study were designed using MarvinSketch software. RESULTS: 5(S)-methyl-L-proline containing 17 ligands were designed. All of them were found to obey Lipinski's rule of five. Compounds were found to have good ADME profile and low toxicity predictions. CONCLUSION: Four compounds were found to have good interactions with DPP-4 binding sites and hence created the scope to develop DPP-4 inhibitors containing 5(S)-methyl-L-proline moiety.


Assuntos
Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Peptidomiméticos , Diabetes Mellitus/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Prolina/farmacologia , Prolina/uso terapêutico
17.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833851

RESUMO

The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.


Assuntos
Inibidores da Angiogênese , Degeneração Macular , Neoplasias , Neovascularização Patológica , Peptidomiméticos , Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Animais , Humanos , Ligantes , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Peptidomiméticos/química , Peptidomiméticos/uso terapêutico , Fatores de Crescimento do Endotélio Vascular/química , Fatores de Crescimento do Endotélio Vascular/uso terapêutico
18.
Curr Top Med Chem ; 21(28): 2574-2592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34315367

RESUMO

Peptidomimetics are studied for medicinal application because of their ability to mimic hierarchical structures of peptides and proteins. To break the limitation and expand the peptidomimetics family, a new class of peptidomimetics based on peptide nucleic acids (PNAs) backbone - "γ-AApeptides" was developed. Compared with previous peptidomimetics, γ-AApeptides possess prominent advantages such as resistance to proteolytic degradation, enhanced chemodiversity, good selectivity and outstanding bioactivity. The synthesis of γ-AApeptides is carried out using a ''monomer building block'' strategy which is facile and efficient. γ-AApeptides are able to mimic primary and secondary structures of therapeutic peptides, which make them promising candidates for molecular probes and potential drug leads. In the past decade, several interesting structures and applications of γ-AApeptides have been developed by different approaches such as structure-based design, combinatorial library screening, and peptides selfassembly and folding. By following the mechanism of host-defense peptides (HDPs), antibiotic γ- AApeptides showed broad-spectrum activity. At the same time, γ-AApeptides can be used for combinatorial library screening because of their structural stability and their chemodiversity. Anticancer agents, anti-T2DM (Type 2 diabetes mellitus) agents, anti-HIV (human immuno-deficiency virus) agents and anti-Alzheimer's disease agents were developed by combinatorial screening and rational design. Furthermore, γ-AApeptides as biopolymers, nanomaterials, supramolecular structures and self-assembly architectures were studied due to their unique backbone structures. Therefore, γ-AApeptides may play an important role in the development of peptidomimetics.


Assuntos
Amidas/farmacologia , Amidas/uso terapêutico , Desenho de Fármacos , Peptidomiméticos/classificação , Peptidomiméticos/síntese química , Doença de Alzheimer/tratamento farmacológico , Amidas/síntese química , Amidas/classificação , Animais , Fármacos Anti-HIV , Antineoplásicos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Peptidomiméticos/química , Peptidomiméticos/uso terapêutico
19.
Curr Protein Pept Sci ; 22(7): 526-533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34137361

RESUMO

Neurodegenerative diseases have emerged as one of the major age-associated diseases in recent years. Hence, the urge to understand the mechanism and to find targeted therapeutics becomes inevitable. Peptide-based compounds have emerged as one of the important tools for their therapy. However, due to a lack of tolerability, specificity, and proteolytic degradation, they have lost their applicability in the broader sense. Thus, the search for suitable alternatives or peptidomimetics becomes an important criterion for neurotherapeutics. One of the versatile peptidomimetics is N-substituted glycines or peptoids, which retain many properties of peptides but successfully evade the drawbacks of peptides. Peptoids are manifested with greater cellular permeability, less immunogenicity, and their ability to be administered intra-nasally. These properties enhance their potential as neurotherapeutics with respect to their peptide counterparts. Recently, peptoids have been explored for neurotherapeutic applications as aggregation inhibitors, cell signaling pathways modulators, and agents for inhibiting inflammation via multiple mechanisms. Peptoids, due to their versatility and low production cost, are becoming popular among peptidomimetics as potential neurotherapeutic agents. In this review, the diverse applications of peptoids with respect to neurodegenerative disease have been explored.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Peptidomiméticos/uso terapêutico , Peptoides/uso terapêutico , Humanos , Resultado do Tratamento
20.
Expert Rev Anti Infect Ther ; 19(10): 1205-1217, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33844613

RESUMO

Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19.Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained.Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/química , COVID-19/prevenção & controle , Catelicidinas/uso terapêutico , Simulação por Computador , Defensinas/uso terapêutico , Hepcidinas/uso terapêutico , Humanos , Lactoferrina/uso terapêutico , Meliteno/uso terapêutico , Estrutura Molecular , Peptidomiméticos/uso terapêutico , SARS-CoV-2 , Estruturas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...